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Abstract—Emotion recognition is an integral part of 
affective computing. An affective brain-computer-interface 
(BCI) can benefit the user in a number of applications. In 
most existing studies, EEG (electroencephalograph)-based 
emotion recognition is explored in a classificatory manner. 
In this manner, human emotions are discretized by a set of 
emotion labels. However, human emotions are more of a 
continuous phenomenon than discrete. A regressive 
approach is more suited for continuous emotion recognition. 
Few studies have looked into a regressive approach. In this 
study, we investigate a portfolio of EEG features including 
fractal dimension, statistics and band power. Support vector 
regression (SVR) is employed in this study to estimate 
subject’s valence level by means of different features under 
two evaluation schemes. In the first scheme, a SVR is 
constructed with full training resources, whereas in the 
second scheme, a SVR only receives minimal training 
resources. MAE (mean absolute error) averages of 0.74 and 
1.45 can be achieved under the first and the second scheme, 
respectively, by fractal feature. The advantages of a 
regressive approach over classificatory approach lie in 
continuous emotion recognition and the possibility to reduce 
training resources to minimal level. 
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I. INTRODUCTION 
Human emotion conveys important information during 

inter-personal interaction. In human-computer interaction, 
there is a trend to incorporate user’s affective input into 
system design. The so-called “affective computing” is the 
computing that relates to, arises from or influences 
emotion [1]. Emotion recognition is an integral part of 
affective computing. Based on the recognized user’s 
emotion, the interaction session could be made more 
adaptive to user’s feeling. For example, a game can 
adaptively decrease the difficulty level if the user feels 
frustrated, or increase the level when the user feels the 
opposite. A music player can adaptively select music to 
play in consonance with the user’s feeling. 

Computerized emotion recognition can be achieved by 
different methodologies. The first attempt dates back to 
1972 by Williams et al [2]. They proposed to identify 
human emotions based on speaker’s speech signal. Other 
methods include text-based [3] and facial recognition-
based [4] etc. EEG (electroencephalograph)-based 
emotion recognition started to gain more attention in the 
latest decade when new, portable and wireless EEG 
technology was introduced, which has paved the way for 

the application of EEG to extend from clinical use for 
patients to entertainment use for healthy users. It has 
proven that EEG carries emotion information and can be 
used as a source to identify human emotion [5]. 
Comparing with the speech-based, face-based and text-
based methods, EEG-based emotion recognition does not 
require explicit inputs from users during the interaction 
session. Furthermore, EEG measures the spontaneous 
brain activity and has the potential to assess the truly felt 
emotion from within. 

Human emotion can be modelled by a 3-dimensional 
valence-arousal-dominance space [6]. Under such model, 
an emotion can be assessed from each of the three 
dimensions. The valence dimension indicates the 
pleasantness level, from most unpleasant to most pleasant. 
The arousal dimension is associated with the excitation 
level, from most inactivated to most aroused. The 
dominance dimension refers to the submissiveness-
dominance nature of an emotion. For example, when a 
person feels pleasant (high in valence), activated (high in 
arousal) and in dominating situation (high in dominance), 
he/she is having a happy emotion. Alternatively, we can 
use a (v, a, d)-tuple to denote such emotion. Suppose each 
dimension ranges from 1 to 9, a happy emotion can be 
denoted as, for instance, (8.2, 8.7, 7.6). Therefore, there 
are generally two approaches to emotion recognition. One 
approach is classification, which employs a classifier to 
classify emotion into different categories such as happy, 
sad, fear, angry etc. The other approach is regression 
which, based on the numerical notation, estimates the 
numerical value on each dimension. 

In previous studies, EEG-based emotion recognition 
was mostly done in a classificatory manner. Ishino and 
Hagiwara [7] employed alpha, beta, gamma power and 
neural network to classify four emotions (joy, anger, 
sorrow, relaxation) and achieved accuracy from 54.50 % 
to 67.70 %. Lin et al [8] adopted Support Vector Machine 
(SVM) to discriminate four emotions (joy, anger, sadness, 
pleasure) using difference of power between symmetric 
electrodes as feature. The reported accuracy was 90.72 %. 
Wang et al. [9] used log power feature and explored 
several different classifiers to classify four emotions (joy, 
relax, sad, fear). Best accuracy of 66.51 % was achieved 
by SVM. Petrantonakis and Hadjileontiadis proposed to 
use higher order crossings (HOC) as features and SVM to 
differentiate six emotions (happiness, surprise, anger, fear, 
disgust, sadness). Murugappan [10] used statistical 
features from different frequency bands and KNN to 
identify five emotions (happy, surprise, fear, disgust, 
neutral). 
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The classificatory approach has been extensively 
studied, whereas very few studies have investigated the 
regressive approach. The regressive approach has several 
merits over classificatory approach. In classificatory 
approach, the emotions can only be categorized into pre-
defined emotion labels. The classifier is unable to generate 
emotion labels beyond those that are used to train it. 
Human emotions are discretized under this approach. 
Although it is intuitive to use descriptive emotion labels to 
refer to emotions, it may be misinterpreted in some 
cultural context. Some emotion labels are not cross-
lingual, e.g., Polish does not have an exact equivalent 
word for “disgust” [11]. Moreover, human emotions are 
more of a continuous phenomenon instead of discrete 
states. These problems can be avoided in the regressive 
approach. First and foremost, continuous emotion 
recognition is possible under the numerical notation: the 
regressor outputs continuous, real values instead of 
discrete words. The regressive approach may also have the 
potential to minimize training resources when it is crucial 
to do so. 

Soleymani et al. [11] did a pilot study in regression-
based emotion recognition using power spectrum density 
feature extracted from EEG. Uzun et al. [12] employed 
Support Vector Regression (SVR) and Hilbert Huang 
transform to estimate three emotion primitives. In this 
study, we adopt the regressive approach and focus on 
estimating the valence ratings—the first principal 
component [14] that counts for the most variance in 
ratings of emotional experience—from EEG signals, 
under controlled arousal/dominance condition. Valence 
perception has been associated with the lateral brain 
pattern [15][16], which results in asymmetric activities 
between left and right hemispheres. Positive emotions 
(high valence) generally trigger greater left hemispheric 
activities, whereas negative emotions (low valence) 
stimulate the right hemisphere more. Some studies 
[17][18], however, report that such lateral pattern is 
subject-dependent and some subjects may exhibit the 
reversed pattern: greater left hemispheric activities 
correspond to positive emotion perception, and greater 
right hemispheric activities are associated with negative 
emotion. We measure such asymmetry by difference of 
feature parameters between left and right hemispheres. 
We investigate and compare several different features 
against each other. We also investigate the possibility to 
minimize training resources under the regressive 
approach, which, to the best of our knowledge, has not 
been investigated in current literature. 

The rest of the paper is organized as such: Section II 
describes the experiment methods in this study; Section III 
presents the experiment results with discussions; Section 
IV concludes the paper. 

II. METHODS 

A. Dataset 
The DEAP dataset 1 by Koelstra et al. [13] was used in 

this study. The dataset contains multimodal physiological 
data from 32 subjects under emotion elicitation 
experiment. Physiological signals were recorded at a 512 
Hz sampling rate and down-sampled to 128 Hz. Data in 
DEAP include 32-channel EEG, 4-channel EOG 
(electrooculogram), 4-channel EMG (electromyogram), 
respiration, plethysmograph and temperature. Subjects 

were required to report their truly felt emotions in 
accordance with the valence-arousal-dominance emotion 
model on a 1-9 scale after exposure to each affective 
stimulus (one-minute long music video). Each subject was 
exposed to totally 40 different stimuli, resulting in 40 one-
minute long EEG trials. 

Since we focus on estimating valence dimension, the 
other two variables, arousal and dominance, are kept 
under control when valence changes. We consider rating = 
5 as a delimiter when controlling the arousal and 
dominance variables. Arousal larger than 5 is considered 
high arousal (HA) and less than 5 low arousal (LA), and 
similarly for the dominance variable. Considering that 
discrimination between two valence ratings may not be 
meaningful when the two ratings are too close to each 
other (e.g. 2.34 and 2.36), we further partition the valence 
ratings into four sub-zones and focus on estimating 
valence ratings in four levels. The available nine subjects 
meeting the abovementioned selection criteria are listed in 
Table I. The Arousal/Dominance column refers to the 
controlled arousal/dominance condition. The available 
EEG trial IDs in DEAP are listed the table under each 
valence level. The #Comb column refers to the total 
number of combination of trials from four levels. 
Particularly, subject 5 satisfies the trial selection criteria 
under two arousal/dominance conditions: HAHD and 
LALD. Both conditions are considered and investigated 
for subject 5. For the rest subjects, only one 
arousal/dominance condition is satisfied. 

B. Feature Extraction 
In this study, we investigate a portfolio of different 

EEG features including fractal dimension (FD) [19], band 
power features and six statistical features (STAT) 
introduced in [20]. Band powers include theta band (4-8 
Hz), alpha band (8-12 Hz) and beta band (12-30Hz). 
Statistical features consist of 1) mean; 2) standard 
deviation; 3) mean of absolute values of first order 
differences; 4) mean of absolute values of first order 
differences from z-scored (zero-mean and unit-variance) 
EEG signals; 5) mean of absolute values of second order 
differences; 6) mean of absolute values of second order 
differences from z-scored EEG signals. 

The fractal dimension features are computed by 
Higuchi algorithm as was used in [19]. Power features are 
extracted by Fast Fourier Transform. Statistic features are 
computed as in [20]. All feature parameters are extracted 
in a sliding window fashion from each channel. The width 
of the sliding window is set to 512 but window step size 
varies from 32 to 512, yielding different overlapping rates 
(93.75 %, 87.50 %, 75.00 %, 50.00 % and 0.00 %). Then, 
in order to measure the asymmetric activities between left 
and right hemispheres, the difference of feature 
parameters between left hemisphere and right hemisphere 
are computed by 

 RHrLHlFFF rlrl ∈∀∈∀−=Δ − ,, , (1) 

where Fl and Fr denote the feature parameter extracted 
from channel l and r, ∆Fl-r the difference of feature values 
between channel pair l-r, LH the left hemisphere channel 
set comprising 14 channels ({FP1, AF3, F3, F7, FC5, 
FC1, C3, T7, CP5, CP1, P3, P7, PO3, O1}) and RH the 
right hemisphere channel set consisting of 14 channels 

1 http://www.eecs.qmul.ac.uk/mmv/datasets/deap/ 
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({FP2, AF4, F4, F8, FC6, FC2, C4, T8, CP6, CP2, P4, P8, 
PO4, O2}). The differencing operation yields 196 ∆Fs 
over 196 channel pairs. The ∆Fs are concatenated to form 
a feature vector k

rlF −Δ , where k indicates the kind of 
feature and hence can be any of FD, 1-6 STAT, theta, 
alpha and beta power. 

C. Linear Correlation 
To see how ∆F correlates with subject’s valence ratings 

v, the Pearson correlation coefficient is analyzed for each 
kind of feature per channel pair. In this analysis, ∆Fs 
computed using non-overlapping sliding window from 
trials under the same arousal dominance condition are 
concatenated to form a vector Φ. Subject’s valence ratings 
from all trials under the same arousal dominance 
condition are concatenated to form a vector Ψ. Linear 
correlation between Φ and Ψ is given by 

 
ΨΦ

ΨΦ
=ΨΦ

σσ
),cov(),(r , (2) 

where )cov(⋅ is the covariance operator and σ denotes the 
standard deviation. 

D. Regression 
The Support Vector Regression (SVR) with Radial 

Basis Function (RBF) kernel implemented in LIBSVM 
[21] is adopted in this study. The goal of a regressor is to 
perform real-value mapping f, such that f( k

rlF −Δ )→v, 
where k

rlF −Δ  is the feature parameters of kind k and v is 
the valence rating by the subject. It is worth noting that v 
is continuous, hence continuous rather than discrete 
emotion recognition is possible under regressive approach. 

After feature extraction, half of the data are randomly 
drown to form a training set, and the other half will be 
used as a test set. The training set will be used to tune the 
SVR parameters C and γ in a grid-search manner. The test 
set will be used to evaluate the regression performance in 
a leave-one-out fashion. The regression performance is 
measured by mean absolute error (MAE) 

  −=
N

i
ii vv

N
MAE ˆ1 , (3) 

where iv̂ is the estimated valence rating of the ith sample 
given by the regressor, and iv  the true valence rating 
given by the subject. 

As can be seen in Table I, the numbers of available 
trials for different valence levels are not balanced. To 
avoid unbalanced comparison and to focus on estimating 
four valence levels, we repeatedly draw one trial from 
each of the four levels until all possible trial combinations 
have been exhausted. The regression performance is 
evaluated on and averaged over the test sets of all trial 
combinations. The numbers of trial combinations are 
listed in the last column in Table I. 

We conduct two kinds of evaluations. In the first kind, 
the regressor is trained with and tested on four levels’ 
resources. In the second kind, the regressor is trained with 
two level’s resources (min valence level and max valence 
level), but tested on four levels’ resources. The purpose of 
the second kind of evaluation is to investigate whether it is 
possible to minimize training resources. Considering that 
the acquisition of EEG training data is laborious, and the 
calibration process maybe tedious for some subjects, it is 
helpful to minimize training resources so that the subject 
can start to use the brain-computer interface as fast as 
possible. 

III. RESULTS AND DISCUSSIONS 
The linear correlation between subject’s valence ratings 

and different features from the best channel pair are 
presented in Table II. To compensate for multiple 
comparisons, the 0.05 alpha level is divided by a factor of 
196. Only when the p value is smaller than 2.55e-04 is it 
considered significant (marked by *). The results in Table 
II show that FD, 3rd and 5th STAT and beta power have 
significant linear relationship with valence ratings. Thus, 
the features may be used as an indicator to reveal the 
subject’s valence level. The results also support the lateral 
phenomenon related to valence perception, though the 
lateral pattern varies among different features and 
subjects. 

The subject’s valence level is estimated by SVR using 
different kinds of feature in two schemes. In the first 
scheme, the regressor is constructed with training 
resources from four valence levels, and tested on four 
valence levels, in a leave-one-out manner based on the 
exhaustion of all level combinations. To take advantage of 
the linear relationship, in the second scheme, the regressor 
is trained with only two levels’ resources (max and min 
levels), but tested on four levels’ resources, in the same 

TABLE I.  SUBJECT SELECTION FROM DEAP DATASET. AROUSAL/DOMINANCE CORRESPONDS TO THE CONTROLLED AROUSAL DOMINANCE 
CONDITION. THE THIRD TO SIXTH COLUMN LIST THE TRIAL ID IN DEAP UNDER EACH VALENCE LEVEL. THE LAST COLUMN SHOWS THE NUMBER OF 

COMBINATION OF TRIALS FROM DIFFERENT VALENCE LEVELS. 

Subject Arousal/Dominance 
Trial ID in DEAP 

#Comb Level 1 
)2( <v

Level 2 
)42( << v

Level 3 
)86( << v

Level 4 
)8( >v  

5 HAHD 23,37 30 31,34,40 2,4,11 18
5 LALD 32 28 1,9,12,14,17,20,26,27 18,19 16
7 HALD 24 16 2,4,6,11,14 20 5
8 HALD 31,36 40 13 12 2
10 HAHD 35 2,34,39 1,4,5,6,9,19 11 18
13 HALD 23,31,35,37,38,39 30 11,18,20,28 13 24
14 HALD 21, 30 23,24,29,33,34,35,37,38 20 1 16
24 HAHD 21 7 1,2,4,5,9,11,19,27 3,14,18 24
25 HAHD 10,32,33,37,38,39 2,18,23,35 3,7,13,15,19,20 1,8,9,11,12,14,22 1008
28 HAHD 35,38 32 1,2,5,10,19,27,31,33,40 3,4,6,7,20 90
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cross-validation manner as the first scheme. In both 
schemes, the final MAE is averaged over 5000 bootstrap-
sampled MAEs per subject. Reported in Table III are the 
final MAE averaged over all subjects, and the boxplots of 
MAE averages are shown in Fig. 1 for different features. 
In Table III, FD feature achieves the minimal MAE in 
comparison with other features in both evaluation 
schemes. The MAE also tends to decrease when the step 
size shrinks. The minimal MAE averages of 0.74 and 1.45 
are obtained by FD feature for the first and the second 
schemes, respectively. In the STAT portfolio, the 3rd 
STAT performs the best under 50.00 % window 
overlapping, but is inferior to the 4th STAT when window 
overlapping exceeds 50.00 %. The combination of all 
STAT features is not found to improve the performance. 
In the power feature portfolio, similarly, a combination of 
theta, alpha and beta does not lead to improved 
performance. The best power feature is from beta band. In 
all features, performance of the second evaluation scheme 
at step size 32 is comparable to that of the first scheme at 
step size 128. 

In Fig. 1, the upper and the lower portion show the 
boxplots of the first and the second evaluation scheme, 
respectively. It can clearly be seen that FD has the 
minimal MAE average in all cases. However, the boxes 
for the 4th and 6th STAT are more compact, indicating 
smaller variance. The tendency that MAE decreases when 
window overlapping increases is mostly noticeable for 
FD, the 4th and 6th STAT. 

To compare the two evaluation schemes, we further 
analyze the 95.00 % bootstrap confidence interval of 
MAE averages in both evaluation schemes for FD feature, 
using the BCA (Bias-Corrected and Accelerated) method 
[22]. The boxplots in Fig. 2 show the lower and upper 
bounds of the 95.00 % confidence intervals for both 
schemes under different window overlapping. The blue 
boxes represent the first evaluation scheme—training with 
full resources, whereas the beige boxes represent the 
second evaluation scheme—training with minimal 
resources. As we can see from Fig. 2, when the sliding 
window does not overlap, the confidence intervals under 
two evaluation schemes have substantial overlapping. This 
may indicate that the performance does not significantly 
differ. However, when window overlapping increases, 
confidence interval overlapping shrinks. No confidence 
interval overlapping exists when sliding window overlaps 
above 87.50 %. The performance of the two schemes 
differs significantly at this level. Both schemes yield 
improved results when sliding window overlapping 
increases. However, it is not clear whether the 

improvement is due to dependency introduced by 
overlapping window. 

IV. CONCLUSION 
Human emotion recognition is an integral part of 

affective computing. EEG-based emotion recognition 
attempts to identify human emotion by means of 
spontaneous brain signals, thus has the potential to assess 
the truly felt emotion from within the subject. An affective 
brain-computer interface can benefit the user in a number 
of applications, including but not limited to entertainment. 
Previously, EEG-based emotion recognition was explored 
extensively in a classificatory manner. The use of 
descriptive emotion label is intuitive but suffers from a 
few drawbacks. In this manner, emotions are discretized 
by a set of pre-defined emotion labels, whereas human 
emotions are more of a continuous phenomenon. In this 
work, we explore to estimate subject’s valence level in a 
continuous way by means of a regressive approach. 
Valence level has been associated with the pleasantness 
level under the valence-arousal-dominance emotion 
model. A portfolio of EEG features including FD, STAT 
and band powers is investigated. FD, 3rd and 5th STAT 
and beta power are found to significantly correlate with 
valence level. We adopt a SVR to estimate subject’s 
valence level from the EEG signals in two evaluation 
schemes. In the first evaluation, the SVR is constructed 
with training resources from four valence levels, and 
tested on four valence levels. In the second evaluation, the 
SVR is trained with only the minimal number of 
resources—the max and min valence level—and tested on 
four levels. Confidence interval analysis shows that the 
performance of the two evaluation schemes do not differ 
significantly when the sliding window are non-
overlapping. Both schemes yield improved results when 
sliding window overlapping increase. MAE averages of 
0.74 and 1.45 can be achieved under the first and the 
second evaluation scheme, respectively, by FD feature. It 
is possible to minimize training resources if it is crucial to 
do so, at a fair amount of performance trade-off for ease of 
training. A smaller step size setting may be advisable 
when one wants to minimize training resources. The 
merits of a regressive approach over a classificatory 
approach lie in continuous emotion recognition, and the 
possibility to reduce EEG training resources to minimal 
level. 
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